Big questions and challenges enzymes in the aquatic environment

Brian H Hill US Environmental Protection Agency Mid-Continent Ecology Division

Microbial enzyme activity regional scale studies

- EMAP Appalachian streams (1993-1994) 130 sites o Phos
- EMAP Appalachian stream & rivers (1997-1998) 130 sites
 DHA, Phos
- NH₄ & PO₄ uptake in forested streams (1999-2002) 187 site-visits o DHA, Glyc, Pept, Phos, Sulf
- Great Lake Environmental Indicators (2002-2003) 54 sites o Glyc, Pept, Phos, Sulf
- EMAP Great Rivers Ecosystems (2004-2006) 447 sites o DHA, Glyc, Pept, Phos, Sulf
- Gulf of Mexico (2007-2008) 5 coring sites o Glyc, Pept, Phos, Sulf
- National Rivers & Streams Assessment (2008-2009) >2200 sites o DHA, Glyc, Pept, Phos, Pox, Perox, Sulf

Stevenson et al. J. N. Am. Benthol. Soc., 2008, 27(3):783–799

TP (µg/L)

Great Lakes Coastal wetlands—

0 2 4 6 8

 \bigcirc

00

0 2 4 6 8

0 2

8°

4

 \bigcirc

000

09

00

6

< 0.2 0.2-0.4 0.4 - 0.6 0.6 - 0.8 0.8-1.0

300 Kilometers

100 200

Gulf of Mexico— Enzymes in the hypoxic zone

National Rivers & Streams Assessment— Enzymes at a really big scale

Sediment C, *In* mg kg⁻¹

ANC, In µeq L⁻¹

What drives enzyme activity in aquatic ecosystems? canonical correlation with environmental variables—Great Rivers

Variable	W1	W2
TN	0.33	0.71
ТР	0.39	0.31
TOC	0.22	0.78
SO ₄	-0.14	-0.87
Sediment TN	0.40	0.19
Sediment TP	0.48	0.38
Sediment TOC	0.85	-0.10
% fine sediment	0.77	-0.30
% agriculture	0.15	0.78
% developed	0.13	0.67
% wetlands	0.09	0.71
NADP TN	0.28	0.52
NADP SO4	0.28	0.53
Variance explained	78%	10%

What drives enzyme activity in aquatic ecosystems? canonical correlation with environmental variables—NRSA

Variable	W 1	W ₂	
рН	-0.68	0.54	
DOC	-0.13	0.22	
TN	-0.02	0.35	
TP	-0.12	0.34	
SO ₄	-0.27	0.44	
Sediment TC	0.69	0.65	
Sediment TN	0.70	0.28	
Sediment TP	0.21	0.24	
Variance explained	78%	10%	

Nutrient stoichiometry— Great River enzymes

C, N, and P limitation (%)—

	C, N, & P			N & P only		
Upper Mississippi River	Water	Sed	Enz	Water	Sed	Enz
C-limitation	16	100	76			
N-limitation	0	0	0	49	54	13
P-limitation	48	0	24	51	46	87
No limitation	36	0	0	0	0	0
Missouri River						
C-limitation	48	100	64			
N-limitation	9	0	0	15	61	3
P-limitation	12	0	36	12	39	97
No limitation	31	0	0	73	0	0
Ohio River						
C-limitation	1	100	79			
N-limitation	0	0	1	0	60	3
P-limitation	97	0	20	98	40	97
No limitation	1	0	0	2	0	0
			-			

Questions & Challenges—

What drives enzyme activity in aquatic environments?

How robust is the relationship between enzyme activity & environmental variables?

How is enzyme activity related to catchment land use?

Scaling issues—sediment particles → reach → river networks→ landscapes → national

 Predictability—if we know the relationship of enzymes to environmental & landscape attributes, can we predict activity across landscapes?

How can we use enzymes to help understand/predict the impacts of climate change?