Large-scale EEA Patterns: Linking Paradigms

RL Sinsabaugh

JJ Follstad Shah

GE TER M C:N C:P N:P pH Vmax Km Ea

Perspectives on Ecosystem Organization

Ecosystem: All organisms that live in a geographic area together with abiotic components that affect or exchange materials with the organisms

EEA Generalizations

- © EEA is positively related to rates of microbial metabolism [production, respiration, decomposition].
- Ratios of hydrolytic activities [glucosidase, aminopeptidase, phosphatase] can be related to resource availability.
- Oxidative activities [phenol oxidase] do not covary with hydrolytic activities.
- Activation energies for EEA are lower than those for microbial metabolism.

Other Big Scale EEA trends: Soil organic matter

B-glucosidase Cellobiohydrolase N-acetylglucoaminidase Phosphatase

Activities covary with soil organic matter content

Sinsabaugh RL, CL Lauber, MN Weintraub, B Ahmed, SD Allison, C Crenshaw, AR Contosta, D Cusack, S Frey, ME Gallo, TB Gartner, Sarah E. Hobbie, Keri Holland, BL Keeler, JS Powers, M Stursova, C Takacs-Vesbach, M Waldrop, M Wallenstein, DR Zak, LH Zeglin. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11:1252-1264.

Other Big Scale EEA trends: Soil pH

Phenol oxidase
Peroxidase
Leucine aminopeptidase
N-acetylglucosaminidase
Phosphatase

Activities covary with Soil pH

Sinsabaugh RL, CL Lauber, MN Weintraub, B Ahmed, SD Allison, C Crenshaw, AR Contosta, D Cusack, S Frey, ME Gallo, TB Gartner, Sarah E. Hobbie, Keri Holland, BL Keeler, JS Powers, M Stursova, C Takacs-Vesbach, M Waldrop, M Wallenstein, DR Zak, LH Zeglin. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11:1252-1264.

Pushing our paradigm: Stoichiometry

- Michaelis-Menten model: Substrate generation
 - $V = V_{max} * S/[S + Km]$
 - V = rate, Vmax = max rate, S = substrate conc., Km = half saturation constant
- Monod model: Organismal growth
 - $\mu = \mu_{\text{max}} * R/[R + K\mu]$
 - μ = growth rate, μ_{max} = max growth rate, R = resource conc., $K\mu$ = half saturation constant
- Droop model: Stoichiometric growth
 - $\mu = \mu_{\text{max}} * 1 [Q_{\text{min}}/Q]$
 - Q_{min} = element content/cell at zero growth rate, Q = element content/cell

Growth rate hypothesis

- Specific growth rate [µ] is a function of the rRNA [ribosome] content of cells.
- As μ increases, cellular P content $[Q_P]$ increases, biomass N:P $[B_{N:P}]$ decreases.
- As μ increases threshold element ratio for N:P decreases [TER_{N:P}].
 - TER is the threshold element ratio for optimal (stoichiometrically balanced) growth.
- \bullet TER_{C:P}/B_{C:P} = A_P/GE
- \bullet TER_{C:N}/B_{C:N} = A_N/GE

- Allen & Gillooly. 2009. Ecol Lett. 12:369-384

EEA Predictions for Growth Rate Hypothesis

- BG/AP \propto TER_{C:P}/B_{C:P} \propto A_P/GE
- BG/(LAP+NAG) \propto TER_{C:N}/B_{C:N} \propto A_N/GE
 - · Sinsabaugh, Hill, Follstad Shah. 2009. Nature 462:795-798
- TER_{N:P} for microbial communities associated with decomposing litter declines from 45 to 2 with increasing nutrient supply
 - · Gusewell & Gessner. 2009. Functional Ecology 23:211-219
- Magnitude of EEA is proportional to rate of nutrient supply
- Slope of N:P regression (LAP+NAG)/AP is < 1.0.</p>

For soils and sediments, scaling relationship for N-acquiring and P-acquiring hydrolytic activities is consistent with growth rate hypothesis of ecological stoichiometry: EEA N:P slope < 1.

Litter decomposition and the growth rate hypothesis

- Increasing organic matter recalcitrance reverses the growth rate hypothesis
 - Sinsabaugh & Follstad Shah. 2010. Biogeochemistry
 - Nutrient availability declines as residual OM becomes increasingly recalcitrant
 - Growth rates slow
 - TER_{N:P} should increase
 - TER_{C:P} and TER_{C:N} should decrease
 - Critical $R_C/[R_C + L_C]$ ratio ~ 0.45

EEA test for GRH reversal

- \bullet BG/POX $\propto 1/[(R+L)/R]$
 - R = recalcitrant organic matter, L = labile OM
- BG & POX uncorrelated
- AP & POX have weak +correlation
- (LAP+NAG) & POX have +correlation
 - POX & LAP have strong +correlation
 - POX & NAG have –correlation
- Normalizing hydrolytic activities to POX captures the declining availability of C and nutrients associated with humification.

EEA and biomass stoichiometry (B)

- \bullet BG/AP \propto TER_{C:P}/B_{C:P}
- BG/(LAP+NAG) \propto TER_{C:N}/B_{C:N}
 - C:N:P of soil microbial biomass: 60:7:1
 - [Cleveland & Liptzin. 2006. Biogeochemistry 85:235-252]
 - C:N:P of planktonic microbial biomass: 106:16:1
 - [Redfield 1958 and many others]
- EEA prediction: slopes of BG/AP and BG/ (LAP+NAG) regressions should be related to difference in B of attached and planktonic microbial communities.

EEA is normalized to microbial productivity (P). Mean $B_{C:P}$ for plankton and biofilm: 106/60 = 1.77 EEA C:P slopes: 1.046/0.653 = 1.60 Mean $B_{C:N}$ for plankton and biofilm: 6.6/8.6 = 0.77 EEA C:N slopes: 0.944/1.068 = 0.88

Sinsabaugh, Van Horn, Follstad Shah, Findlay. 2010. Microbial Ecology

EEA and metabolic theory

$$P_{tot} \left(\sum_{j=1}^{n} App V_{\max_{j}} / 2 \right)^{-\sigma} = b_0 \langle M_i \rangle^b e^{-E_a / k \langle T \rangle} N$$

- Left: Production normalized to resource supply which is expressed as the summed flows of nutrients from major EEA resource pools.
- Right: Metabolism normalized to body size, number of individuals and temperature.

Resource supply from 6 enzymes (Vmax/2 Km) as a function of temperature.

Over the year, apparent activation energies (Ea) for resource supply are lower than the apparent Ea of bacterial production (in black).

Seasonal shift in resource supply: Carbohydrates are relatively more abundant resources for production than proteins in fall and winter (litter fall).

AG

BG

LAP

n BP (nmol h

Protein supports relatively more production in spring and summer (algal production).

Sinsabaugh & Follstad Shah. 2010. Ecology

- →Over an annual cycle, temperature corrected resource supply from EEA is correlated with temperature corrected bacterial production.
- → Apparent Ea of resource supply matches the apparent Ea of production.

Sinsabaugh & Follstad Shah. 2010. Ecology

0.41

EEA-up Decomposition Model?

Summary

- Functional metaproteomics is a big part of stoichiometric and metabolic theories of ecology.
 - Focus has been intracellular enzymes
 - ribosomes, RuBisCo, nitrogenase, hydrogenase, glutamine synthetase, etc.
- EEA has a lot of potential to resolve issues related to resource vs. thermodynamic control of community metabolism.
 - Easy to measure at high spatiotemporal resolution.
 - Relevant to community composition and diversity.
 - Presenting our work more explicitly in the context of general theory will extend interest.