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Perspectives on Ecosystem Organization

Ecosystem: All organisms that live in a geographic area together with
abiotic components that affect or exchange materials with the organisms

Metaproteomic:
Ecosystems as
pools of enzymes

Stoichiometric: Thermodynamic: |
Ecosystems as - Ecosystems as "
interacting elements metabolic processes

Metagenomic:
Ecosystems as gene pools




EEA Generalizations

EEA 1s positively related to rates of
microbial metabolism [production,
respiration, decomposition].

)Ratios ot hydrolytic activities [glucosidase,
aminopeptidase, phosphatase] can be
related to resource availability.

Oxidative activities [phenol oxidase]| do not
covary with hydrolytic activities.

) Activation energies tor EEA are lower than
those for microbial metabolism.
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Other Big Scale EEA
trends: Soil pH
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Pushing our paradigm:

Stoichiometry
IMichaelis-Menten model: Substrate
generation
. V=V_.* S/[S+ Km]

- V = rate, Vmax = max rate, S = substrate conc., Km = half
saturation constant

Monod model: Organismal growth
° W= Wmax 3 R/[R T KM]

= growth rate, u_., = max growth rate, R = resource conc., Ku =
half saturation constant

'Droop model: Stoichiometric growth
° W= Wpax @ 1 - [Qmm/Q]

- Q... = element content/cell at zero growth rate, Q = element
content/cell
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Growth rate hypothesis

Specific growth rate [u] is a function of the
rRINA [ribosome] content of cells.

As u 1ncreases, cellular P content [Q;]
Increases, biomass N:P [B,.;] decreases.

As u increases threshold element ratio for
N:P decreases [TERy.p].

- TER 1s the threshold element ratio for optimal
(stoichiometrically balanced) growth.

TER..»/Bap = A,/GE
TER../Bay = Ay/CE

- Allen & Gillooly. 2009. Ecol Lett. 12:369-384
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Growth rate for invertebrates
inversely related to threshold C:P
ratio [Gillooly & Allen 2009]
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EEA Predictions for Growth Rate
Hypothesis

BG/AP o< TER.../B.p <A,/CE

BG/(LAP+NAG) o< TER-./B-.y <A/ GE
* Sinsabaugh, Hill, Follstad Shah. 2009. Nature 462:795-798
TER,.; for microbial communities associated

with decomposing litter declines from 45 to 2

with increasing nutrient supply
- Gusewell & Gessner. 2009. Functional Ecology 23:211-219

) Magnitude ot EEA 1s proportional to rate ot
nutrient supply

Slope of N:P regression (LAP+NAG)/AP i1s <
1.0.



For soils and sediments, scaling relationship for N-acquiring and
P- acquiring hydrolytic activities 1s consistent with growth rate
hypothesis of ecological stoichiometry: EEA N:P slope < 1.

y = 0.8482x + 1.1639
R*=0.69409

95% confidence interval:
0.819 -0.877
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Litter decomposition and the
growth rate hypothesis

Increasing organic matter recalcitrance

reverses the growth rate hypothesis
- Sinsabaugh & Follstad Shah. 2010. Biogeochemistry

- Nutrient availability declines as residual OM
becomes increasingly recalcitrant

» Growth rates slow

- TERy.p should increase

» TER-.;, and TER. should decrease
- Critical R./[R + L] ratio ~ 0.45



EEA test tor GRH reversal
BG/POX o< 1/[(R+L)/R]

* R = recalcitrant organic matter, L = labile OM

BG & POX uncorrelated
AP & POX have weak +correlation

(LAP+NAG) & POX have +correlation

» POX & LAP have strong +correlation
» POX & NAG have —correlation

Normalizing hydrolytic activities to POX
captures the declining availability of C
and nutrients assoclated with humification.
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Hydrolytic C:P
b=1.162
11
10 Hydrolytic C:N
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POX normalization for OM recalitrance

implies: greater C limitation [C:P and C:N
= slopes shift from >1 to <1] and increasing
TERy.p [N:P slope shifts from <1 to >1]
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'EEA and biomass stoichiometry (B)

BG/AP o< TER../Beop
BG/(LAP+NAG) o< TERq./Bon

» C:N:P of soil microbial biomass: 60:7:1
* [Cleveland & Liptzin. 2006. Biogeochemistry 85:235-252]

» C:N:P of planktonic microbial biomass: 106:16:1
- [Rediield 1958 and many othezrs]

EEA prediction: slopes ot BG/AP and BG/

(LAP+NAG) regressions should be related
to difference in B of attached and planktonic
microbial communities.



EEA 1s normalized to microbial productivity (P).

Mean B for plankton and biofilm: 106/60 = 1.77
EEA C:P slopes: 1.046/0.653 = 1.60

Mean B, for plankton and biofilm: 6.6/8.6 =0.77
EEA C:N slopes: 0.944/1.068 = 0.88

BG/(LAP+NAG) slopes: C:N BG/AP slopes: C:P
Attached (Blue) 1.068 Attached (Blue) 0.653
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EEA and metabolic theory

O

Left: Production normalized to resource

supply which i1s expressed as the
summed flows of nutrients from major

EEA resource pools.
Right: Metabolism normalized to body

size, number of individuals and
temperature.
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y =-0.98 + 38.7
* =0.24, p < 0.001

Resource supply from 6

enzymes (Vmax/2 Km)
as a function of

temperature.
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Over the year, apparent
activation energies (Ea)
for resource supply are

lower than the apparent
Ea of bacterial

production (in black).
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Seasonal shift in resource supply:

Carbohydrates are relatively more
abundant resources for production

than proteins in fall and winter (litter
fall).
Protein supports relatively more

production in spring and summer
(algal production).

Sinsabaugh & Follstad

Shah. 2010. Ecology
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=» Over an annual cycle,
temperature corrected resource
supply from EEA is correlated with

temperature corrected bacterial
production.

=>» Apparent Ea of resource supply
matches the apparent Ea of

production.

Sinsabaugh & Follstad Shah. 2010.
Ecology




EEA Metaproteosphere
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EEA-up Decomposition Model?
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Suminary

Functional metaproteomics is a big part of
stoichiometric and metabolic theories of

ecology.

» Focus has been intracellular enzymes

- ribosomes, RuBisCo, nitrogenase, hydrogenase, glutamine
synthetase, etc.

EEA has a lot of potential to resolve issues

related to resource vs. thermodynamic control
of community metabolism.
» Easy to measure at high spatiotemporal resolution.

» Relevant to community composition and diversity.

» Presenting our work more explicitly in the context ot
general theory will extend interest.
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